Robust Vision Challenge

Robust Vision Challenge

The increasing availability of large annotated datasets such as Middlebury, PASCAL VOC, ImageNet, MS COCO, KITTI and Cityscapes has lead to tremendous progress in computer vision and machine learning over the last decade. Public leaderboards make it easy to track the state-of-the-art in the field by comparing the results of dozens of methods side-by-side. While steady progress is made on each individual dataset, many of them are limited to specific domains. KITTI, for example, focuses on real-world urban driving scenarios, while Middlebury considers indoor scenes. Consequently, methods that are state-of-the-art on one dataset often perform worse on a different one or require substantial adaptation of the model parameters.

The goal of this challenge is to foster the development of vision systems that are robust and consequently perform well on a variety of datasets with different characteristics. Towards this goal, we propose the Robust Vision Challenge, where performance on several tasks (eg, reconstruction, optical flow, semantic/instance segmentation, single image depth prediction) is measured across a number of challenging benchmarks with different characteristics, e.g., indoors vs. outdoors, real vs. synthetic, sunny vs. bad weather, different sensors. We encourage submissions of novel algorithms, techniques which are currently in review and methods that have already been published.

Challenges

ROB features 6 challenges: stereo, multi-view stereo (MVS), optical flow, single image depth prediction, semantic segmentation and instance segmentation. Participants are free to submit to a single challenge or to multiple challenges. For each challenge, the results of a single model must be submitted to all benchmarks (indicated with an x below).

Stereo
MVS
Flow
Depth
Semantic
Instance

Gold Sponsors

Silver Sponsors



eXTReMe Tracker